The aerodynamic effects of wing rotation and a revised quasi-steady model of flapping flight.
نویسندگان
چکیده
We used a dynamically scaled model insect to measure the rotational forces produced by a flapping insect wing. A steadily translating wing was rotated at a range of constant angular velocities, and the resulting aerodynamic forces were measured using a sensor attached to the base of the wing. These instantaneous forces were compared with quasi-steady estimates based on translational force coefficients. Because translational and rotational velocities were constant, the wing inertia was negligible, and any difference between measured forces and estimates based on translational force coefficients could be attributed to the aerodynamic effects of wing rotation. By factoring out the geometry and kinematics of the wings from the rotational forces, we determined rotational force coefficients for a range of angular velocities and different axes of rotation. The measured coefficients were compared with a mathematical model developed for two-dimensional motions in inviscid fluids, which we adapted to the three-dimensional case using blade element theory. As predicted by theory, the rotational coefficient varied linearly with the position of the rotational axis for all angular velocities measured. The coefficient also, however, varied with angular velocity, in contrast to theoretical predictions. Using the measured rotational coefficients, we modified a standard quasi-steady model of insect flight to include rotational forces, translational forces and the added mass inertia. The revised model predicts the time course of force generation for several different patterns of flapping kinematics more accurately than a model based solely on translational force coefficients. By subtracting the improved quasi-steady estimates from the measured forces, we isolated the aerodynamic forces due to wake capture.
منابع مشابه
Loading Estimation of Flapping Wings under Aeroelastic Effect Using Finite Element Method
The aim of this paper is to provide an aeroelastic computational tool which determines the induced wing loads during flapping flight. For this purpose, a Finite Element (FE) code based on a four-node plate bending element formulation is developed to simulate the aeroelastic behavior of flapping wings in low incompressible flow. A quasi-steady aerodynamic model is incorporated into the aeroelast...
متن کاملTwo-Dimensional Aerodynamic Models of Insect Flight for Robotic Flapping Wing Mechanisms of Maximum Efficiency
In the “modified quasi-steady” approach, two-dimensional (2D) aerodynamic models of flapping wing motions are analyzed with focus on different types of wing rotation and different positions of rotation axis to explain the force peak at the end of each half stroke. In this model, an additional velocity of the mid chord position due to rotation is superimposed on the translational relative veloci...
متن کاملA CFD-informed quasi-steady model of flapping wing aerodynamics.
Aerodynamic performance and agility during flapping flight are determined by the combination of wing shape and kinematics. The degree of morphological and kinematic optimisation is unknown and depends upon a large parameter space. Aimed at providing an accurate and computationally inexpensive modelling tool for flapping-wing aerodynamics, we propose a novel CFD (computational fluid dynamics)-in...
متن کاملAerodynamic damping during rapid flight maneuvers in the fruit fly Drosophila.
We systematically investigated the effect of body rotation on the aerodynamic torque generation on flapping wings during fast turning maneuvers (body saccades) in the fruit fly Drosophila. A quasi-steady aerodynamic simulation of turning maneuvers with symmetrically flapping wings showed that body rotation causes a substantial aerodynamic counter-torque, known as flapping counter-torque (FCT), ...
متن کاملFlapping wing flight can save aerodynamic power compared to steady flight.
Flapping flight is more maneuverable than steady flight. It is debated whether this advantage is necessarily accompanied by a trade-off in the flight efficiency. Here we ask if any flapping motion exists that is aerodynamically more efficient than the optimal steady motion. We solve the Navier-Stokes equation governing the fluid dynamics around a 2D flapping wing, and determine the minimal aero...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of experimental biology
دوره 205 Pt 8 شماره
صفحات -
تاریخ انتشار 2002